

NAG C Library Function Document

nag_dgebrd (f08kec)

1 Purpose

nag_dgebrd (f08kec) reduces a real m by n matrix to bidiagonal form.

2 Specification

```
void nag_dgebrd (Nag_OrderType order, Integer m, Integer n, double a[],  
     Integer pda, double d[], double e[], double tauq[], double taup[],  
     NagError *fail)
```

3 Description

nag_dgebrd (f08kec) reduces a real m by n matrix A to bidiagonal form B by an orthogonal transformation: $A = QBP^T$, where Q and P^T are orthogonal matrices of order m and n respectively.

If $m \geq n$, the reduction is given by:

$$A = Q \begin{pmatrix} B_1 \\ 0 \end{pmatrix} P^T = Q_1 B_1 P^T,$$

where B_1 is an n by n upper bidiagonal matrix and Q_1 consists of the first n columns of Q .

If $m < n$, the reduction is given by

$$A = Q(B_1 \ 0)P^T = QB_1P_1^T,$$

where B_1 is an m by m lower bidiagonal matrix and P_1^T consists of the first m rows of P^T .

The orthogonal matrices Q and P are not formed explicitly but are represented as products of elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q and P in this representation (see Section 8).

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: **order** – Nag_OrderType *Input*

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order = Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: **order = Nag_RowMajor** or **Nag_ColMajor**.

2: **m** – Integer *Input*

On entry: m , the number of rows of the matrix A .

Constraint: $m \geq 0$.

3:	n – Integer	<i>Input</i>
<i>On entry:</i> n , the number of columns of the matrix A .		
<i>Constraint:</i> $n \geq 0$.		
4:	a [<i>dim</i>] – double	<i>Input/Output</i>
Note: the dimension, dim , of the array a must be at least $\max(1, \text{pda} \times n)$ when order = Nag_ColMajor and at least $\max(1, \text{pda} \times m)$ when order = Nag_RowMajor .		
If order = Nag_ColMajor , the (i, j) th element of the matrix A is stored in a [($j - 1$) \times pda + $i - 1$] and if order = Nag_RowMajor , the (i, j) th element of the matrix A is stored in a [($i - 1$) \times pda + $j - 1$].		
<i>On entry:</i> the m by n matrix A .		
<i>On exit:</i> if $m \geq n$, the diagonal and first super-diagonal are overwritten by the upper bidiagonal matrix B , elements below the diagonal are overwritten by details of the orthogonal matrix Q and elements above the first super-diagonal are overwritten by details of the orthogonal matrix P .		
If $m < n$, the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix B , elements below the first sub-diagonal are overwritten by details of the orthogonal matrix Q and elements above the diagonal are overwritten by details of the orthogonal matrix P .		
5:	pda – Integer	<i>Input</i>
<i>On entry:</i> the stride separating matrix row or column elements (depending on the value of order) in the array a .		
<i>Constraints:</i>		
if order = Nag_ColMajor , pda $\geq \max(1, m)$; if order = Nag_RowMajor , pda $\geq \max(1, n)$.		
6:	d [<i>dim</i>] – double	<i>Output</i>
Note: the dimension, dim , of the array d must be at least $\max(1, \min(m, n))$.		
<i>On exit:</i> the diagonal elements of the bidiagonal matrix B .		
7:	e [<i>dim</i>] – double	<i>Output</i>
Note: the dimension, dim , of the array e must be at least $\max(1, \min(m, n) - 1)$.		
<i>On exit:</i> the off-diagonal elements of the bidiagonal matrix B .		
8:	tauq [<i>dim</i>] – double	<i>Output</i>
Note: the dimension, dim , of the array tauq must be at least $\max(1, \min(m, n))$.		
<i>On exit:</i> further details of the orthogonal matrix Q .		
9:	taup [<i>dim</i>] – double	<i>Output</i>
Note: the dimension, dim , of the array taup must be at least $\max(1, \min(m, n))$.		
<i>On exit:</i> further details of the orthogonal matrix P .		
10:	fail – NagError *	<i>Output</i>
The NAG error parameter (see the Essential Introduction).		

6 Error Indicators and Warnings

NE_INT

On entry, **m** = $\langle value \rangle$.

Constraint: **m** ≥ 0 .

On entry, $\mathbf{n} = \langle \text{value} \rangle$.

Constraint: $\mathbf{n} \geq 0$.

On entry, $\mathbf{pda} = \langle \text{value} \rangle$.

Constraint: $\mathbf{pda} > 0$.

NE_INT_2

On entry, $\mathbf{pda} = \langle \text{value} \rangle$, $\mathbf{m} = \langle \text{value} \rangle$.

Constraint: $\mathbf{pda} \geq \max(1, \mathbf{m})$.

On entry, $\mathbf{pda} = \langle \text{value} \rangle$, $\mathbf{n} = \langle \text{value} \rangle$.

Constraint: $\mathbf{pda} \geq \max(1, \mathbf{n})$.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle \text{value} \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies $QBP^T = A + E$, where

$$\|E\|_2 \leq c(n)\epsilon\|A\|_2,$$

$c(n)$ is a modestly increasing function of n , and ϵ is the *machine precision*.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of floating-point operations is approximately $\frac{4}{3}n^2(3m - n)$ if $m \geq n$ or $\frac{4}{3}m^2(3n - m)$ if $m < n$.

If $m \gg n$, it can be more efficient to first call nag_dgeqrf (f08aec) to perform a QR factorization of A , and then to call this function to reduce the factor R to bidiagonal form. This requires approximately $2n^2(m + n)$ floating-point operations.

If $m \ll n$, it can be more efficient to first call nag_dgelqf (f08ahc) to perform an LQ factorization of A , and then to call this function to reduce the factor L to bidiagonal form. This requires approximately $2m^2(m + n)$ operations.

To form the orthogonal matrices P^T and/or Q , this function may be followed by calls to nag_dorgbr (f08kfc):

to form the m by m orthogonal matrix Q

```
nag_dorgbr (order, Nag_FormQ, m, m, n, &a, pda, tauq, &fail)
```

but note that the second dimension of the array \mathbf{a} must be at least \mathbf{m} , which may be larger than was required by nag_dgebrd (f08kec);

to form the n by n orthogonal matrix P^T

```
nag_dorgbr (order, Nag_FormP, n, n, m, &a, pda, taup, &fail)
```

but note that the first dimension of the array **a**, specified by the parameter **pda**, must be at least **n**, which may be larger than was required by nag_dgebrd (f08kec).

To apply Q or P to a real rectangular matrix C , this function may be followed by a call to nag_dormbr (f08kgc).

The complex analogue of this function is nag_zgebrd (f08ksc).

9 Example

To reduce the matrix A to bidiagonal form, where

$$A = \begin{pmatrix} -0.57 & -1.28 & -0.39 & 0.25 \\ -1.93 & 1.08 & -0.31 & -2.14 \\ 2.30 & 0.24 & 0.40 & -0.35 \\ -1.93 & 0.64 & -0.66 & 0.08 \\ 0.15 & 0.30 & 0.15 & -2.13 \\ -0.02 & 1.03 & -1.43 & 0.50 \end{pmatrix}.$$

9.1 Program Text

```
/* nag_dgebrd (f08kec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{
    /* Scalars */
    Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
    Integer exit_status=0;
    NagError fail;
    Nag_OrderType order;
    /* Arrays */
    double *a=0, *d=0, *e=0, *taup=0, *tauq=0;

#ifndef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
    order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
    order = Nag_RowMajor;
#endif

    INIT_FAIL(fail);
    Vprintf("f08kec Example Program Results\n");

    /* Skip heading in data file */
    Vscanf("%*[^\n] ");
    Vscanf("%ld%ld%*[^\n] ", &m, &n);
#ifndef NAG_COLUMN_MAJOR
    pda = m;
#else
    pda = n;
#endif
    d_len = MIN(m,n);
    e_len = MIN(m,n)-1;
    tauq_len = MIN(m,n);
    taup_len = MIN(m,n);

    /* Allocate memory */

```

```

if ( !(a = NAG_ALLOC(m * n, double)) ||
    !(d = NAG_ALLOC(d_len, double)) ||
    !(e = NAG_ALLOC(e_len, double)) ||
    !(taup = NAG_ALLOC(taup_len, double)) ||
    !(tauq = NAG_ALLOC(tauq_len, double)) )
{
    Vprintf("Allocation failure\n");
    exit_status = -1;
    goto END;
}

/* Read A from data file */
for (i = 1; i <= m; ++i)
{
    for (j = 1; j <= n; ++j)
        Vscanf("%lf", &A(i,j));
}
Vscanf("%*[^\n] ");

/* Reduce A to bidiagonal form */
f08kec(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from f08kec.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Print bidiagonal form */
Vprintf("\nDiagonal\n");
for (i = 1; i <= MIN(m,n); ++i)
    Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
if (m >= n)
    Vprintf("\nSuper-diagonal\n");
else
    Vprintf("\nSub-diagonal\n");
for (i = 1; i <= MIN(m,n) - 1; ++i)
    Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n");

END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);

return exit_status;
}

```

9.2 Program Data

```

f08kec Example Program Data
 6 4 :Values of M and N
-0.57  -1.28  -0.39   0.25
-1.93   1.08  -0.31  -2.14
 2.30   0.24   0.40  -0.35
-1.93   0.64  -0.66   0.08
 0.15   0.30   0.15  -2.13
-0.02   1.03  -1.43   0.50 :End of matrix A

```

9.3 Program Results

```

f08kec Example Program Results

Diagonal
 3.6177   2.4161  -1.9213  -1.4265
Super-diagonal
 1.2587   1.5262  -1.1895

```